# CHEMISTRY STUDY MATERIALS FOR CLASS 12 (NCERT BASED NOTES OF CHAPTER - 09) GANESH KUMAR DATE: 30/08/2020

# **Co-ordination Compounds**

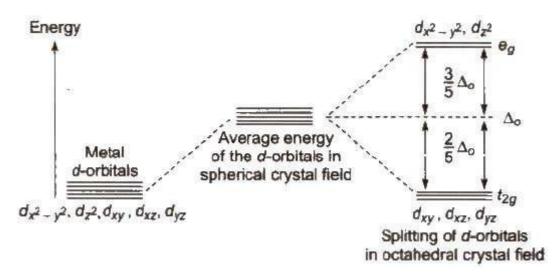
## Spectrochemical series

$$\begin{split} I^- < Br^- < SCN^- < Cl^- < S^{2-} < F^- < OH^- \\ < C_2O_4^{2-} < H_2O < NCS^- < EDTA^{4-} < NH_3 < en < CN^- < CO. \end{split}$$

#### Crystal field splitting in octahedral complexes

In case of octahedral complexes, energy separation is denoted by  $\Delta_{\text{o}}$  (where subscript 0 is for octahedral).

In octahedral complexes, the six-ligands approach the central metal ion along the axis of  $dx^2 - y^2$  and  $dz^2$  orbitals.


Energy of  $e_g$  set of orbitals > energy of  $t_{2g}$  set of orbitals.

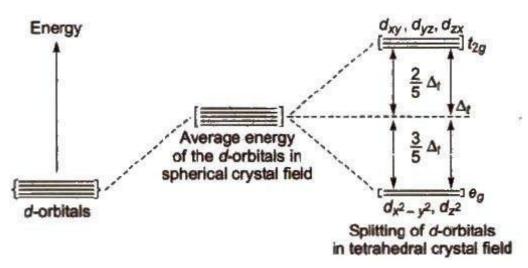
The energy of  $e_g$  orbitals will increase by (3/5)  $\Delta_o$  and  $t_{2g}$  will decrease by (2/5)  $\Delta_o$ .

If  $\Delta_o$  < P, the fourth electron enters one of the  $e_g$  orbitals giving the configuration  $t^3_{2g} \, e^1_g$ . Ligands for which  $\Delta_o$  < P are known as weak field ligands and form high spin complexes.

(where,  $P = \text{energy required for } e^{-} \text{ pairing in an orbital}$ ).

Ligands which produce this effect are known as strong field ligands and form low spin complexes.




## Crystal field splitting in tetrahedral complexes

In tetrahedral complexes, four ligands may be imagined to occupy the alternate comers of the cube and the metal ion at the center of the cube.

Energy of  $t_{2q}$  set of orbitals > Energy of  $e_q$  set of orbitals.

In such complexes d – orbital splitting is inverted and is smaller as compared to the octahedral field splitting.

Orbital splitting energies are so low that pairing of electrons are not possible so these are high spin complexes.



## **Colour in Coordination Compounds**

The crystal field theory attributes the colour of the coordination compounds to d- d transition of the electron, i.e., electron jump from  $t_{2g}$  level to higher  $e_g$  level. In the absence of ligands, crystal field splitting does not occur and hence the substance is colourless.

\*\*\*\*\*